

Comparing Link Grammars and Dependency Grammars for parsing German histological reports

Julian Dörenberg^{1, 2} julian.doerenberg@rwth-aachen.de, jdoerenberg@ukaachen.de

¹ RWTH Aachen University
 ² University Hospital RWTH Aachen

Secondary usage of data

Gutachten (Excerpt)

Unterlappen mit einem 6,5 cm großen mäßiggradig differenzierten Plattenepithelkarzinom.

Minimale Randabstände des Plattenepithelkarzinoms:

- Zum Bronchusresektionsrand: 0,4 cm
- Zur Pleura visceralis: 0,1 cm
- Zum chirurgischen Resektionsrand: 0,7 cm

Nebenbefundlich abszedierende Retentionspneumonie und fibrosierte Pleura visceralis.

(...)

Problem and example sentence

Human reads:

"Unterlappen mit einem 6,5 cm großen mäßiggradig differenzierten Plattenepithelkarzinom."

- -> Plattenepithelkarzinom is mäßiggradig differenziert
- -> *Plattenepithelkarzinom* is 6.5cm of size
- -> Plattenepithelkarzinom is located at Unterlappen (lower lobe of the lung)

Computer reads:

"Word Word Word Word Word Word Word Word."

-> No structured information

Solution

Patient ID	Type of Carcinoma		Degree of differenciation	
12345	Plattenepithelkarzinom	6,5cm	mäßiggradig	

- 1.) Semantics: Identify relevant words and define a mapping to a data format
- ⇒ Interesting research question, but not part of this talk
- 2.) **Syntax**: Identify grammatical relations between words
- ⇒ Use grammar and parser

Link Grammars [1, 2]

Grammar is dictionary mapping words to grammatical contexts

$$Karzinom -> d_{11} V d_{12} V d_{13} ...$$
 $groß -> d_{21} V d_{22} V d_{23} ...$

Planarity of relation graphs

Connectivity of relation graphs

Ordering in disjuncts is maintained

Two word are connected by max. one link

...

- Parsing is satisfiability checking while complying to meta-rules rules
 - Input: Sentence and grammar
 - Output: Relation graph
 - Idea: Recursively parse regions
 - Base case: Add single relation
 - Backpropagation: Make sure to comply with four rules
 - Runtime: Exponential, but can be reduced to polynomial by using memoization
- Training algorithm is unsupervised
 - Input: Sentences including wordclasses of words
 - Output: Dictionary
 - Idea: Iteratively extend the grammar
 - Generate all possible relation graphs and evaluate for best one by using a metric called *membership value*
 - Relation graphs must comply to meta-rules
 - Runtime: Polynomial

(Dis)advantages of LGs

Advantages:

- Simple, quite intuitive formalism
- Frequently used in information extraction for English medical reports
- Unsupervised training algorithm only needs simple data annotations

• Disadvantages:

- ✓ Adaptations of formalism necessary for German [1]
- ✓ No parser available
- ✓ No training algorithm available
- No training data avilable
- Lexicalized, unable to handle unknown words and typos
- According to S. Kübler: Bad linguistic motivation for German
- Can cause cycles in relation graph (not supported by linguistics)

Dependency Grammars (DGs) [3]

Grammar is trained Recurrent Neural Net (RNN) with word embeddings

Parsing is applying RNN operations

• Input: Embedded words

• Output: Relation graph tree

• Idea: RNNs

Runtime: Polynomial

• Traning algorithm is optimizing weights – e.g. Adam

• Input: RNN model

• Output: Optimized weights

• Idea: Various

Runtime: Various

(Dis)advantages of DGs

• Advantages:

- Neural parser available (Supar [4])
 - Supports different models
 - Word embeddings support unknown words and typos [6]
- Relation graph is a tree, as supported by linguistics
- Training data for German available online

Disadvantages:

- Rarely used for medical applications, especially German
- In literature poor performance for german [5]
- Neural Net: More training data needed, hidden states/black box, computationally expensive
- More complex annotation of training data: Link Grammar just needs word classes, Dependency Grammar needs parsing trees

LGs vs DGs in practical usage

- Lexicalization := Grammar contains dictionary and cannot handle words which are not contained
 - LGs: Yes
 - DGs: No Use word embeddings
- Public training data available
 - LGs: No
 - DGs: Yes Universal Dependencies project [3]
- Public parser framework for german available
 - LGs: No
 - DGs: Yes Supar [4]

Evaluation data for a DG parser

- Parser pretrained by Timothy Dozat and Christopher Manning [6]
- Training data:
 - Newspaper articles and google reviews from Universal Dependencies project [3, 6]
 - Contain twelve languages: Bulgarian, Catalan, Czech, German, English, Spanish, French, Italian, Dutch, Norwegian, Romanian/Moldavian* and Russian
- Evaluation data:
 - 200 sentences from breast biopsy reports
 - Written by two senior pathologists and annotated by me

^{*} Using the ISO 639-1 code it remains ambiguous whether the data include sentences in Romanian, Moldavian or both and Dozat and Manning did not elaborate on that in their paper.

Evaluation concept for a DG parser

- Following idea by Gómez-Rodríguez et al. [12]
- Unlabelled Attachment Score UAS
 - Proportion of correctly extracted grammatical relations between words
- Labelled Accuracy LA
 - Proportion of correctly labelled words
- 3) Labelled Accuracy Score LAS
 - Proportion of correctly labelled word with correct relation to father node
- 4) Application-specific:
 - Medical terms are unknown in training
 - > Proportion Of correct {2,3,4}-ary relations containing at least one medical term

(großen, Plattenepithelkarzinom) (6,5cm, großen, Plattenepithelkarzinom) (großen, Plattenpithelkarzinom, differenzierten, mäßiggradig)

Evaluation of the DG parser

Evaluation data: 200 sentences randomly selected from the breast biopsy reports

-> Localization sentence (local.) do not have unambiguous parsing

Metric	Dozat and Manning [5] All (200 sents)	Dozat and Mannning [5] no local. (165 sents)	
Unlabelled Attachment Score (UAS)	0.94	0.96	
Labelled Accuracy Score (LA)	0.92	0.95	
Labelled Attachment Score (LAS)	0.9	0.93	
Proportion of correctly extracted 2-ary relations	0.95	0.97	
Proportion of correctly extracted 3-ary relations	0.91	0.93	
Proportion of correctly extracted 4-ary relations	0.88	0.89	

UAS: Proportion of correct relations

LA: Proportion of correct tags

LAS: Proportion of correct tags and relations

{2,3,4}-ary relations: Proportion of correctly extracted relations containing at least one medical word

Limitations of DG parsing

- Multiword Expressions (MWEs): At least two words form a semantical unit
 - E.g. Carcinoma in situ

- No MWE parsed correctly in 200 breast biopsy reports, but corpus too small for mor detailed analysis
- ⇒ Training data from histological reports required to analyse and enhance the performance of the DG parser on histological reports
- Nevertheless, Evaluation in real application interesting due to good performance

Complete approach: Evaluation

Number of HCCs	Fibrosis	Vascular invasion	Tumor diameter	Inflamm.	Inflamm. degree	Distance to resection area	Desmet stage	Steatosis	Cirrhosis	Correct
1			1,4cm			1mm			TRUE	Correct
1		TRUE	5,5cm			0,3cm				Wrong
1	TRUE		4,2cm	TRUE		0,3cm			FALSE	vviolig
1	TRUE	TRUE	8,5cm	TRUE			3			Not
1			16cm			0,1cm				given in
1	TRUE	TRUE	4,2cm	TRUE		1,5mm		TRUE	FALSE	report
1										
1		FALSE	9,5cm			1cm				
1		FALSE	8,5cm	TRUE				TRUE		
1	TRUE		3,6cm			0,2cm	1-2			

<u>Problematic sentence:</u>

(...) mit milder entzündlicher Aktivität und portaler sowie septenbildender Fibrose mit Architekturstörung (Grad 2, Stadium 3 nach Desmet).

Summary

- DGs are superior over LGs in practical usage
 - No public framework available for LGs
 - No public training data available for LGs
 - LGs are lexicalized
- Performance of LGs on histological reports remains unknown
- DG parsing performance on histological reports is very good even though no medical training data were used
- ⇒ Need for analysis of LG parser performance on histological reports is questionable and not recommended, use DGs instead
- ⇒ DG-annotated training data from histological reports required for improvement of parsing performance

References

- [1] Sandra Kübler. 1998. Learning a Lexicalized Grammar for German. New Methods in Language Processing and Computational Natural Language Learning, p. 11-18.
- [2] Daniel Sleator, Davy Temperley. 1991. Parsing English with a Link Grammar
- [3] Marie-Catherine de Marneffe, Christopher D. Manning, Nivre Joakim, Daniel Zeman. Universal Dependencies. 2017. Computational Linguistics.
- [4] https://pypi.org/project/supar/ and https://github.com/yzhangcs/parser
- [5] E. Kara, T. Zeen, A. Gabryszak, K. Budde, D. Schmidt, and R. Roller. A Domain-adapted Dependency Parser for German Clinical Text. en. In A Domain-adapted Dependency Parser for German Clinical Text. Verlag der Osterreichischen Akademie der Wissenschaften, 2018.
- [6] Timothy Dozat, Christopher D. Manning. Deep Biaffine Attention for Neural Dependency Parsing. 2017. Conference paper at ICLR.
- [7] Carlos Gómez-Rodríguez, Iago Alonso-Alonso, David Vilares. How important is syntactic parsing accuracy? An empirical evaluation on rule-based sentiment analysis. 2017. Artificial Intelligence Review.